工程師
其他
架構設計
變革
企業(yè)級
推薦課程
average > 0 ? $model->average . '分' : '10.0分' ?>

大模型底層原理深度剖析解密

李善思

前阿里巴巴 數(shù)據(jù)架構師

前阿里巴巴數(shù)據(jù)架構師,對大數(shù)據(jù)、自然語言處理、圖像識別、Python、Java相關技術有深入的研究,積累了豐富的實踐經(jīng)驗。在工業(yè)領域曾參與了燃煤優(yōu)化、設備故障診斷項目,正泰光伏電池片和組件EL圖像檢測項目;在自然語言處理方面,擔任導購機器人項目的架構師,主導開發(fā)機器人的語義理解、短文本相似度匹配、上下文理解,以及通過自然語言檢索產品庫,在項目中構建了NoSQL+文本檢索等大數(shù)據(jù)架構,也同時負責問答對的整理和商品屬性的提取,帶領NLP團隊構建語義解析層。具備深厚的大模型理論知識和實踐經(jīng)驗,熟悉國內外大模型的發(fā)展趨勢和應用場景。曾在實際項目中應用RAG,對色差檢測有深入理解和實踐操作、并使用大模型提取關鍵信息等。
重要參與項目:
1.正泰太陽能單多晶電池片(組件)的EL瑕疵檢測:使用人工智能圖像識別算法智能判斷瑕疵,幫助節(jié)省人工。本項目還與MES對接得到太陽能組件信息以及瑕疵缺陷的標準(每個客戶的瑕疵定義不同)用以幫助算法正確判斷是否是缺陷。
2.化纖絲餅表面瑕疵檢測項目:使用人工智能圖像識別算法結合拍攝裝置輸入軟硬一體的解決方案,并且與現(xiàn)場設備進行對接獲取必要信息,幫助節(jié)省人工檢測成本。
3.數(shù)字化工廠項目:針對工廠的數(shù)字化、自動化、智能化做詳細的調研與方案的撰寫。

前阿里巴巴數(shù)據(jù)架構師,對大數(shù)據(jù)、自然語言處理、圖像識別、Python、Java相關技術有深入的研究,積累了豐富的實踐經(jīng)驗。在工業(yè)領域曾參與了燃煤優(yōu)化、設備故障診斷項目,正泰光伏電池片和組件EL圖像檢測項目;在自然語言處理方面,擔任導購機器人項目的架構師,主導開發(fā)機器人的語義理解、短文本相似度匹配、上下文理解,以及通過自然語言檢索產品庫,在項目中構建了NoSQL+文本檢索等大數(shù)據(jù)架構,也同時負責問答對的整理和商品屬性的提取,帶領NLP團隊構建語義解析層。具備深厚的大模型理論知識和實踐經(jīng)驗,熟悉國內外大模型的發(fā)展趨勢和應用場景。曾在實際項目中應用RAG,對色差檢測有深入理解和實踐操作、并使用大模型提取關鍵信息等。 重要參與項目: 1.正泰太陽能單多晶電池片(組件)的EL瑕疵檢測:使用人工智能圖像識別算法智能判斷瑕疵,幫助節(jié)省人工。本項目還與MES對接得到太陽能組件信息以及瑕疵缺陷的標準(每個客戶的瑕疵定義不同)用以幫助算法正確判斷是否是缺陷。 2.化纖絲餅表面瑕疵檢測項目:使用人工智能圖像識別算法結合拍攝裝置輸入軟硬一體的解決方案,并且與現(xiàn)場設備進行對接獲取必要信息,幫助節(jié)省人工檢測成本。 3.數(shù)字化工廠項目:針對工廠的數(shù)字化、自動化、智能化做詳細的調研與方案的撰寫。

課程費用

6800.00 /人

課程時長

2

成為教練

課程簡介

課程介紹大模型底層關鍵技術、底層架構原理以及核心框架技術,通過對大語言模型體系化的講解和實戰(zhàn)演練,幫助學員深入深度揭秘大模型技術內幕,為企業(yè)培養(yǎng)數(shù)智化人。
【課程收益】
1、梳理大語言模型知識體系,幫助學員了解中外前沿科技、方法工具和業(yè)內最佳實踐;
2、通過案例講解,幫助學員掌握大模型的底層原理和企業(yè)級智能應用架構設計;
3、幫助單位完善數(shù)字化人才梯隊培養(yǎng),助力企業(yè)快速度融入數(shù)智化變革浪潮;

目標收益

培訓對象

希望掌握大模型底層原理、底層架構、提示詞工程的在校學生、軟件開發(fā)人員、售前工程師、在咨詢顧問及業(yè)務人員。

課程大綱

第一天上午:算法框架篇 1. 介紹Transformer
?Transformer模型的背景和發(fā)展
?Transformer的核心組件:自注意力機制、位置編碼、編碼器-解碼器結構等
?Hugging Face庫簡介
2. Transformer模型架構
?Transformer的編碼器和解碼器結構
?多頭注意力機制的原理和作用
?位置編碼的重要性和實現(xiàn)方式
3. Hugging Face庫入門
?Hugging Face庫的安裝和基本使用
?加載和使用預訓練的Transformer模型
?對文本數(shù)據(jù)進行編碼和解碼
案例練習:結合工業(yè)界應用場景對知識點進行代入式講解,深入淺出幫助學員從道、法、術、器層面對大模型底層原理、核心技術、產業(yè)生態(tài)、商業(yè)應用有一個系統(tǒng)性的認識。
第一天下午: 4. Transformer在NLP中的應用
?介紹Transformer在自然語言處理中的應用領域
?Transformer在機器翻譯、文本生成等任務中的成功案例
5. 實踐案例:文本分類任務
?使用Hugging Face庫和Transformer模型進行文本分類
?數(shù)據(jù)準備、模型訓練和評估
作業(yè)布置
?練習使用Hugging Face庫加載不同的Transformer模型
?完成一個簡單的文本生成任務
案例研討:結合課程內容進行講解
第二天上午:
BERT
介紹BERT
?BERT模型的背景和創(chuàng)新之處
?BERT的預訓練機制和微調方法
?BERT模型架構和特點
2. BERT模型細節(jié)
?BERT的嵌入層、Transformer編碼器和輸出層
?BERT的Masked Language Model (MLM) 和 Next Sentence Prediction (NSP)任務
3. Fine-tuning BERT
?BERT模型微調的步驟和技巧
?使用Hugging Face庫進行BERT模型微調
第二天下午:
BERT案例
4. BERT在NLP中的應用
?介紹BERT在自然語言處理領域的廣泛應用
?BERT在問答、命名實體識別等任務中的成功案例
5. 實踐案例:情感分析任務
?使用BERT模型進行情感分析任務
?數(shù)據(jù)處理、模型微調和結果評估
6. 總結和展望
?總結Transformer和BERT模型的重要性和應用價值
?展望Transformer模型的未來發(fā)展方向
第一天上午:算法框架篇
1. 介紹Transformer
?Transformer模型的背景和發(fā)展
?Transformer的核心組件:自注意力機制、位置編碼、編碼器-解碼器結構等
?Hugging Face庫簡介
2. Transformer模型架構
?Transformer的編碼器和解碼器結構
?多頭注意力機制的原理和作用
?位置編碼的重要性和實現(xiàn)方式
3. Hugging Face庫入門
?Hugging Face庫的安裝和基本使用
?加載和使用預訓練的Transformer模型
?對文本數(shù)據(jù)進行編碼和解碼
案例練習:結合工業(yè)界應用場景對知識點進行代入式講解,深入淺出幫助學員從道、法、術、器層面對大模型底層原理、核心技術、產業(yè)生態(tài)、商業(yè)應用有一個系統(tǒng)性的認識。
第一天下午:
4. Transformer在NLP中的應用
?介紹Transformer在自然語言處理中的應用領域
?Transformer在機器翻譯、文本生成等任務中的成功案例
5. 實踐案例:文本分類任務
?使用Hugging Face庫和Transformer模型進行文本分類
?數(shù)據(jù)準備、模型訓練和評估
作業(yè)布置
?練習使用Hugging Face庫加載不同的Transformer模型
?完成一個簡單的文本生成任務
案例研討:結合課程內容進行講解
第二天上午:
BERT
介紹BERT
?BERT模型的背景和創(chuàng)新之處
?BERT的預訓練機制和微調方法
?BERT模型架構和特點
2. BERT模型細節(jié)
?BERT的嵌入層、Transformer編碼器和輸出層
?BERT的Masked Language Model (MLM) 和 Next Sentence Prediction (NSP)任務
3. Fine-tuning BERT
?BERT模型微調的步驟和技巧
?使用Hugging Face庫進行BERT模型微調
第二天下午:
BERT案例
4. BERT在NLP中的應用
?介紹BERT在自然語言處理領域的廣泛應用
?BERT在問答、命名實體識別等任務中的成功案例
5. 實踐案例:情感分析任務
?使用BERT模型進行情感分析任務
?數(shù)據(jù)處理、模型微調和結果評估
6. 總結和展望
?總結Transformer和BERT模型的重要性和應用價值
?展望Transformer模型的未來發(fā)展方向

課程費用

6800.00 /人

課程時長

2

預約體驗票 我要分享

近期公開課推薦

近期公開課推薦

活動詳情

提交需求